Московский Государственный Технический Университет им. Н.Э. Баумана Факультет "Фундаментальные науки" Кафедра "Высшая математика"

Аналитическая геометрия

Модуль 1

Матричная алгебра. Векторная алгебра

Лекция 1.5

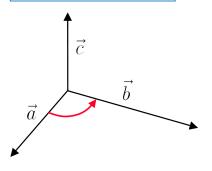
для ГУИМЦ, 2024

к.ф.-м.н. Меньшова И.В.

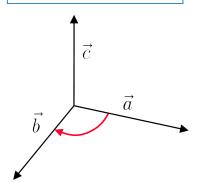
Определение

Три некомпланарных вектора \vec{a} , \vec{b} , \vec{c} , взятые в указанном порядке, образуют правую **тройку**, если с конца третьего вектора \vec{c} кратчайший поворот от первого вектора \vec{a} ко второму вектору \vec{b} виден совершающимся против часовой стрелки, и левую, если по часовой.

Правая тройка



Левая тройка



Так как три некомпланарных вектора образуют базис в пространстве, то все базисы в пространстве делятся на два класса:

Так как три некомпланарных вектора образуют базис в пространстве, то все базисы в пространстве делятся на два класса:

- (1) класс правых базисов,
 - (2) класс левых базисов.

Так как три некомпланарных вектора образуют базис в пространстве, то все базисы в пространстве делятся на два класса:

- (1) класс правых базисов,
 - (2) класс левых базисов.

Класс, к которому относится фиксированный базис, определяет его **ориентацию**.

Определение

Определение

1)
$$\vec{c} \perp \vec{a}$$
 и $\vec{c} \perp \vec{b}$;

Определение

- 1) $\vec{c} \perp \vec{a}$ и $\vec{c} \perp \vec{b}$;
- 2) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b});$

Определение

- 1) $\vec{c} \perp \vec{a}$ и $\vec{c} \perp \vec{b}$;
- 2) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b});$
- 3) векторы \vec{a} , \vec{b} и \vec{c} образуют правую тройку.

Определение

- 1) $\vec{c} \perp \vec{a}$ и $\vec{c} \perp \vec{b}$;
- 2) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b});$
- 3) векторы \vec{a} , \vec{b} и \vec{c} образуют правую тройку.
- Обозначение: $\vec{a} \times \vec{b}$ или $[\vec{a}, \vec{b}]$.

Алгебраические свойства:

Алгебраические свойства:

1) антикоммутативный закон

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}),$$

Алгебраические свойства:

1) антикоммутативный закон

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}),$$

2) дистрибутивный закон

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Алгебраические свойства:

1) антикоммутативный закон

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}),$$

2) дистрибутивный закон

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

3) ассоциативный закон относительно

числового множителя

$$(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b}), \ \lambda \in R.$$

Геометрическое свойство:

Геометрическое свойство:

Векторное произведение двух векторов равняется нулевому вектору тогда и только тогда, когда эти векторы коллинеарны,

Геометрическое свойство:

Векторное произведение двух векторов равняется нулевому вектору тогда и только тогда, когда эти векторы коллинеарны, т.е.

$$\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} | |\vec{b}|.$$

Теорема (векторное произведение в координатной форме)

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{array}{cccc} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array} =$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array} =$$

$$=\vec{i}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{bmatrix} ec{m{j}} & ec{m{k}} \ m{a}_x & a_y & a_z \ m{b}_x & b_y & b_z \ \end{pmatrix} =$$

$$=\vec{i}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{bmatrix} ec{j} & ec{j} & ec{k} \ a_{x} & a_{y} & a_{z} \ a_{x} & b_{y} & b_{z} \ \end{pmatrix} =$$

$$= \vec{i} \cdot \begin{vmatrix} a_y & a_z \\ b_v & b_z \end{vmatrix}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array} =$$

$$= \vec{i} \cdot \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \vec{j}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z) \text{ и } \vec{b} = (b_x, b_y, b_z).$$

$$ec{a} imes ec{b} = egin{bmatrix} ec{i} & ec{i} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{bmatrix} =$$

$$= \vec{i} \cdot \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \vec{j}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

гда
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i} \cdot \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z) \text{ if } \vec{b} = (b_x, b_y, b_z).$$

да
$$ec{a} imesec{b}=egin{array}{c|ccc} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array}= = ec{i}\cdotegin{array}{c|ccc} a_y & a_z \ b_y & b_z \ \end{array}- ec{j}\cdotegin{array}{c|ccc} a_x & a_z \ b_x & b_z \ \end{array}+ ec{k}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{array}{c|c} ec{i} & ec{j} & ec{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z} \ \end{pmatrix} = ec{i} \cdot egin{array}{c|c} a_{y} & a_{z} \ b_{y} & b_{z} \ \end{pmatrix} - ec{j} \cdot egin{array}{c|c} a_{x} & a_{z} \ b_{x} & b_{z} \ \end{pmatrix} + ec{k} \end{aligned}$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$\vec{a} = (a_x, a_y, a_z)$$
 и $\vec{b} = (b_x, b_y, b_z)$.

$$ec{a} imes ec{b} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z} \end{bmatrix} =$$

$$= \vec{i} \cdot \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}.$$

Теорема (векторное произведение в координатной форме)

Пусть заданы два вектора

$$ec{a}=(a_{\scriptscriptstyle X},a_{\scriptscriptstyle Y},a_{\scriptscriptstyle Z})$$
 и $ec{b}=(b_{\scriptscriptstyle X},b_{\scriptscriptstyle Y},b_{\scriptscriptstyle Z})$.

$$ec{a} imes ec{b} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{bmatrix} = ec{b}$$

$$= \vec{i} \cdot \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}.$$

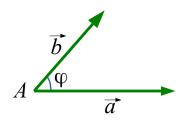
Геометрический смысл:

Геометрический смысл:

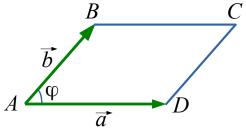
Построим на векторах \vec{a} и \vec{b} параллелограмм:

Геометрический смысл:

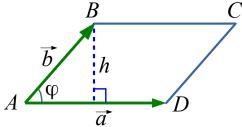
Построим на векторах \vec{a} и \vec{b} параллелограмм:



Геометрический смысл:

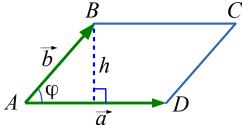


Геометрический смысл:



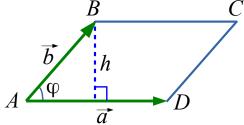
Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:



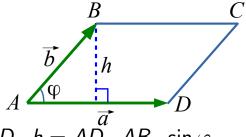
 S_{ABCD}

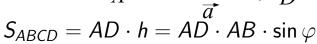
Геометрический смысл:



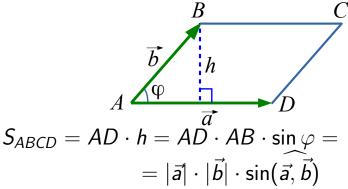
$$S_{ABCD} = AD \cdot h$$

Геометрический смысл:

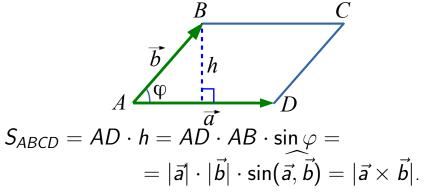




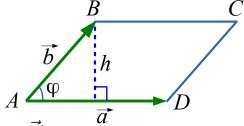
Геометрический смысл:



Геометрический смысл:



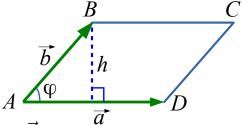
Геометрический смысл:



$$S_{ABCD} = |\vec{a} \times \vec{b}|.$$

Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:

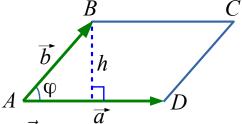


$$S_{ABCD} = |\vec{a} \times \vec{b}|.$$

Эта формула задает геометрический смысл векторного произведения

Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:

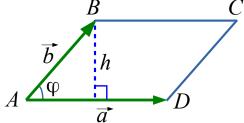


 $S_{ABCD} = |\vec{a} \times \vec{b}|.$

по которому модуль векторного произведения векторов \vec{a} и \vec{b} есть площадь параллелограмма построенного на данных векторах.

Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:

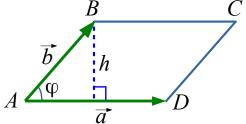


Высота параллелограмма АВСО есть

$$h = \frac{S_{ABCD}}{AD}$$

Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:

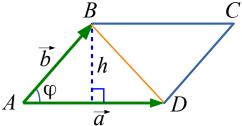


Высота параллелограмма АВСО есть

$$h = \frac{S_{ABCD}}{AD} = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|}.$$

Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:

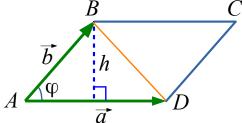


Площадь треугольника ABD равна половине площади параллелограмма ABCD:

$$S_{\Delta ABD} = \frac{1}{2} S_{ABCD}$$

Геометрический смысл:

Построим на векторах \vec{a} и \vec{b} параллелограмм:



Площадь треугольника ABD равна половине площади параллелограмма ABCD:

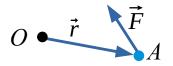
$$S_{\Delta ABD} = \frac{1}{2} S_{ABCD} = \frac{1}{2} |\vec{a} \times \vec{b}|.$$

Механический смысл:

Механический смысл:

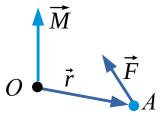
Пусть на частицу A действует сила \vec{F} .

Механический смысл:



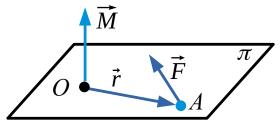
Пусть на частицу A действует сила \vec{F} . Положение этой частицы в пространстве в каждый момент времени задается ее радиус-вектором \vec{r} относительно некоторой фиксированной точки O (полюса).

Механический смысл:



Вектор $\vec{M} = \vec{r} imes \vec{F}$ называется моментом силы \vec{F} относительно точки O

Механический смысл:



Вектор $\vec{M} = \vec{r} \times \vec{F}$ называется моментом силы \vec{F} относительно точки O и характеризует способность силы вращать частицу A вокруг точки O в плоскости π , содержащей точку O и силу \vec{F} .

Примеры:

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Примеры:

І. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

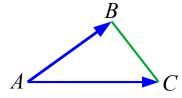
 $\triangle ABC$ построен на векторах \overrightarrow{AB} и \overrightarrow{AC} .

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

 $\triangle ABC$ построен на векторах \overrightarrow{AB} и \overrightarrow{AC} .

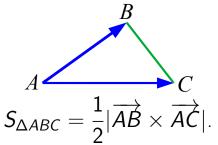


Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

 $\triangle ABC$ построен на векторах \overrightarrow{AB} и \overrightarrow{AC} .



Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

Примеры:

І. Найти площадь треугольника с вершинами A(5; 2; -1), B(3; 1; -2) и C(4; -2; 2).

Решение.

$$\overrightarrow{AB} = (3-5; 1-2; -2-(-1))$$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

$$\overrightarrow{AB} = (3-5; 1-2; -2-(-1)) = (-2; -1; -1),$$

Примеры:

І. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

$$\overrightarrow{AB} = (3-5; 1-2; -2-(-1)) = (-2; -1; -1),$$

Примеры:

I. Найти площадь треугольника с вершинами A(5; 2; -1), B(3; 1; -2) и C(4; -2; 2).

Решение.

$$\overrightarrow{AB} = (3-5; 1-2; -2-(-1)) = (-2; -1; -1),$$

 $\overrightarrow{AC} = (4-5; -2-2; 2-(-1))$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.

$$\overrightarrow{AB} = (3-5; 1-2; -2-(-1)) = (-2; -1; -1),$$

 $\overrightarrow{AC} = (4-5; -2-2; 2-(-1)) = (-1; -4; 3).$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2). Решение. $\overrightarrow{AB}=(-2;-1;-1)$, $\overrightarrow{AC}=(-1;-4;3)$

Примеры:

I. Найти площадь треугольника с вершинами A(5; 2; -1), B(3; 1; -2) и C(4; -2; 2).

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

2. Вычислим векторное произведение:

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

2. Вычислим векторное произведение:

$$\overrightarrow{AB} \times \overrightarrow{AC}$$

Примеры:

I. Найти площадь треугольника с вершинами

$$A(5; 2; -1), B(3; 1; -2) \bowtie C(4; -2; 2).$$

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \overrightarrow{AC} = (-1; -4; 3)$$

2. Вычислим векторное произведение:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -2 & -1 & -1 \\ -1 & -4 & 3 \end{vmatrix}$$

Примеры:

Найти площадь треугольника с вершинами

$$A(5; 2; -1), B(3; 1; -2) \text{ in } C(4; -2; 2).$$

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -2 & -1 & -1 \\ -1 & -4 & 3 \end{vmatrix} =$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix}$$

Примеры:

 Найти площадь треугольника с вершинами A(5; 2; -1), B(3; 1; -2) in C(4; -2; 2).

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix}$$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2). Решение. $\overrightarrow{AB}=(-2;-1;-1)$, $\overrightarrow{AC}=(-1;-4;3)$

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix}$$

Примеры:

 Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2). Решение. $\overrightarrow{AB}=(-2;-1;-1)$, $\overrightarrow{AC}=(-1;-4;3)$

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix}$$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix}$$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.
$$\overrightarrow{AB}=(-2;-1;-1), \ \overrightarrow{AC}=(-1;-4;3)$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix} =$$

$$= -7\vec{i} + 7\vec{j} + 7\vec{k}$$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

$$= \vec{i} \cdot \begin{vmatrix} -1 & -1 \\ -4 & 3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} -2 & -1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} -2 & -1 \\ -1 & -4 \end{vmatrix} =$$

$$= -7\vec{i} + 7\vec{j} + 7\vec{k} = (-7; 7; 7).$$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2). Решение. $\overrightarrow{AB} = (-2;-1;-1)$, $\overrightarrow{AC} = (-1;-4;3)$ $\overrightarrow{AB} \times \overrightarrow{AC} = (-7;7;7)$

Примеры:

I. Найти площадь треугольника с вершинами A(5;2;-1), B(3;1;-2) и C(4;-2;2).

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$
 $\overrightarrow{AB} \times \overrightarrow{AC} = (-7; 7; 7)$

Примеры:

Найти площадь треугольника с вершинами

$$A(5;2;-1)$$
, $B(3;1;-2)$ u $C(4;-2;2)$.

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$
 $\overrightarrow{AB} \times \overrightarrow{AC} = (-7; 7; 7)$

$$S_{\Delta ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

Примеры:

I. Найти площадь треугольника с вершинами

$$A(5; 2; -1), B(3; 1; -2) \text{ in } C(4; -2; 2).$$

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$
 $\overrightarrow{AB} \times \overrightarrow{AC} = (-7; 7; 7)$

$$S_{\Delta ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| =$$

$$= \frac{1}{2} \sqrt{(-7)^2 + 7^2 + 7^2}$$

Примеры:

I. Найти площадь треугольника с вершинами

$$A(5; 2; -1), B(3; 1; -2) \text{ in } C(4; -2; 2).$$

Решение.
$$\overrightarrow{AB} = (-2; -1; -1), \ \overrightarrow{AC} = (-1; -4; 3)$$

 $\overrightarrow{AB} \times \overrightarrow{AC} = (-7; 7; 7)$

$$S_{\Delta ABC}=rac{1}{2}|\overrightarrow{AB} imes \overrightarrow{AC}|=$$
 $=rac{1}{2}\sqrt{\left(-7
ight)^2+7^2+7^2}=rac{7}{2}\sqrt{3}\;($ кв. ед $)$.

Примеры:

II. Найти площадь параллелограмма ABCD, построенного на векторах

$$\vec{a} = \vec{m} + 2\vec{n}$$
 u $\vec{b} = 2\vec{m} + \vec{n}$,

где \vec{m} и \vec{n} - единичные векторы, образующие угол 30° .

Примеры:

II. Найти площадь параллелограмма ABCD, построенного на векторах

$$\vec{a} = \vec{m} + 2\vec{n}$$
 u $\vec{b} = 2\vec{m} + \vec{n}$,

где \vec{m} и \vec{n} - единичные векторы, образующие угол 30° .

Решение.

Примеры:

II. Найти площадь параллелограмма ABCD, построенного на векторах

$$\vec{a} = \vec{m} + 2\vec{n}$$
 u $\vec{b} = 2\vec{m} + \vec{n}$,

где \vec{m} и \vec{n} - единичные векторы, образующие угол 30° .

Решение.

Воспользуемся формулой:

$$S_{ABCD} = |\vec{a} \times \vec{b}|.$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b}$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n})$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n}) =$$

$$= 2(\vec{m} \times \vec{m}) + \vec{m} \times \vec{n} + 4(\vec{n} \times \vec{m}) + 2(\vec{n} \times \vec{n})$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n}) =$$

$$= 2\underbrace{(\vec{m} \times \vec{m})}_{\vec{0}} + \vec{m} \times \vec{n} + 4(\vec{n} \times \vec{m}) + 2(\vec{n} \times \vec{n})$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n}) = 2\underbrace{(\vec{m} \times \vec{m})}_{\vec{0}} + \vec{m} \times \vec{n} + 4(\vec{n} \times \vec{m}) + 2\underbrace{(\vec{n} \times \vec{n})}_{\vec{0}}$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n}) =$$

$$= 2\underbrace{(\vec{m} \times \vec{m})}_{\vec{0}} + \vec{m} \times \vec{n} + 4\underbrace{(\vec{n} \times \vec{m})}_{-(\vec{m} \times \vec{n})} + 2\underbrace{(\vec{n} \times \vec{n})}_{\vec{0}}$$

Примеры:

II. Найти ...

$$\vec{a} = \vec{m} + 2\vec{n}$$
 и $\vec{b} = 2\vec{m} + \vec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n}) =$$

$$= 2\underbrace{(\vec{m} \times \vec{m})}_{\vec{0}} + \vec{m} \times \vec{n} + 4\underbrace{(\vec{n} \times \vec{m})}_{-(\vec{m} \times \vec{n})} + 2\underbrace{(\vec{n} \times \vec{n})}_{\vec{0}} =$$

$$= \vec{m} \times \vec{n} - 4(\vec{m} \times \vec{n})$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$\vec{a} \times \vec{b} = (\vec{m} + 2\vec{n}) \times (2\vec{m} + \vec{n}) =$$

$$= 2\underbrace{(\vec{m} \times \vec{m})}_{\vec{0}} + \vec{m} \times \vec{n} + 4\underbrace{(\vec{n} \times \vec{m})}_{-(\vec{m} \times \vec{n})} + 2\underbrace{(\vec{n} \times \vec{n})}_{\vec{0}} =$$

$$= \vec{m} \times \vec{n} - 4(\vec{m} \times \vec{n}) = -3(\vec{m} \times \vec{n}).$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$|\vec{a} \times \vec{b}|$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})|$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})| = |-3| \cdot |\vec{m} \times \vec{n}|$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})| = |-3| \cdot |\vec{m} \times \vec{n}| =$$

$$= 3 \cdot |\vec{m}| \cdot |\vec{n}| \cdot \sin 30$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})| = |-3| \cdot |\vec{m} \times \vec{n}| = 3 \cdot |\vec{m}| \cdot |\vec{n}| \cdot \sin 30 = 3 \cdot 1 \cdot 1 \cdot \frac{1}{2}$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})| = |-3| \cdot |\vec{m} \times \vec{n}| = 3 \cdot |\vec{m}| \cdot |\vec{n}| \cdot \sin 30 = 3 \cdot 1 \cdot 1 \cdot \frac{1}{2} = 1, 5.$$

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

2. Вычислим модуль векторного произведения:

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})| = |-3| \cdot |\vec{m} \times \vec{n}| = 3 \cdot |\vec{m}| \cdot |\vec{n}| \cdot \sin 30 = 3 \cdot 1 \cdot 1 \cdot \frac{1}{2} = 1, 5.$$

3. Найдем площадь параллелограмма:

Примеры:

II. Найти ...

$$ec{a}=ec{m}+2ec{n}$$
 и $ec{b}=2ec{m}+ec{n}$

Решение.

2. Вычислим модуль векторного произведения:

$$|\vec{a} \times \vec{b}| = |-3(\vec{m} \times \vec{n})| = |-3| \cdot |\vec{m} \times \vec{n}| = 3 \cdot |\vec{m}| \cdot |\vec{n}| \cdot \sin 30 = 3 \cdot 1 \cdot 1 \cdot \frac{1}{2} = 1, 5.$$

3. Найдем площадь параллелограмма:

$$|S_{ABCD} = |ec{a} imes ec{b}| = 1,5$$
 (кв.ед).

Смешанное произведение векторов

Смешанное произведение векторов

Определение

Если вектор \vec{a} векторно умножить на вектор \vec{b} , а полученный вектор скалярно умножить на вектор \vec{c} , то получится число, называемое **смешанным произведением** векторов \vec{a} , \vec{b} и \vec{c} .

Определение

Если вектор \vec{a} векторно умножить на вектор \vec{b} , а полученный вектор скалярно умножить на вектор \vec{c} , то получится число, называемое **смешанным произведением** векторов \vec{a} , \vec{b} и \vec{c} .

Обозначение: $(\vec{a} \times \vec{b}) \cdot \vec{c}$ или $\vec{a}\vec{b}\vec{c}$.

Алгебраические свойства:

Алгебраические свойства:

1) в смешанном произведении знаки векторного и скалярного умножений можно менять местами,

Алгебраические свойства:

1) в смешанном произведении знаки векторного и скалярного умножений можно менять местами, т.е.

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}),$$

Алгебраические свойства:

1) в смешанном произведении знаки векторного и скалярного умножений можно менять местами, т.е.

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}),$$

2) дистрибутивный закон

$$(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = \vec{a}_1\vec{b}\vec{c} + \vec{a}_2\vec{b}\vec{c},$$

Алгебраические свойства:

1) в смешанном произведении знаки векторного и скалярного умножений можно менять местами, т.е.

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}),$$

2) дистрибутивный закон

$$(\vec{a_1} + \vec{a_2})\vec{b}\vec{c} = \vec{a_1}\vec{b}\vec{c} + \vec{a_2}\vec{b}\vec{c},$$

3) ассоциативный закон относительно

числового множителя $(\lambda \vec{a})\vec{b}\vec{c} = \vec{a}(\lambda \vec{b})\vec{c} = \vec{a}\vec{b}(\lambda \vec{c}) = \lambda(\vec{a}\vec{b}\vec{c}), \ \lambda \in R.$

Геометрическое свойство:

Геометрическое свойство:

Смешанное произведение трех векторов равняется нулю тогда и только тогда, когда эти векторы компланарны,

Геометрическое свойство:

Смешанное произведение трех векторов равняется нулю тогда и только тогда, когда эти векторы компланарны, т.е.

$$(ec{a} imesec{b})\cdotec{c}=0\Leftrightarrowec{a}$$
, $ec{b}$ и $ec{c}$ компланарны.

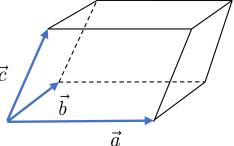
Геометрический смысл:

Геометрический смысл:

На трех некомпланарных векторах \vec{a} , \vec{b} и \vec{c} , выходящих из одной точки, построим параллелепипед.

Геометрический смысл:

На трех некомпланарных векторах \vec{a} , \vec{b} и \vec{c} , выходящих из одной точки, построим параллелепипед.



Геометрический смысл:

Тогда объем построенного параллелепипеда будет численно равен значению смешанного произведения векторов \vec{a} , \vec{b} и \vec{c} , взятому по модулю:

$$V_{\mathsf{nap}} = |\vec{a}\vec{b}\vec{c}|,$$

Геометрический смысл:

Тогда объем построенного параллелепипеда будет численно равен значению смешанного произведения векторов \vec{a} , \vec{b} и \vec{c} , взятому по модулю:

$$V_{\mathsf{nap}} = |\vec{a}\vec{b}\vec{c}|,$$

а объем треугольной пирамиды, построенной на этих же векторах, есть

$$V_{\mathsf{пир}} = rac{1}{6} | ec{a} ec{b} ec{c} |.$$

Теорема (смешанное произведение в координатной форме)

Теорема (смешанное произведение в координатной форме)

Пусть заданы три вектора

$$\vec{a} = (a_x, a_y, a_z), \ \vec{b} = (b_x, b_y, b_z), \ \vec{c} = (c_x, c_y, c_z).$$

Теорема (смешанное произведение в координатной форме)

Пусть заданы три вектора

$$ec{a}=(a_{\scriptscriptstyle X},a_{\scriptscriptstyle Y},a_{\scriptscriptstyle Z}),\; ec{b}=(b_{\scriptscriptstyle X},b_{\scriptscriptstyle Y},b_{\scriptscriptstyle Z}),\; ec{c}=(c_{\scriptscriptstyle X},c_{\scriptscriptstyle Y},c_{\scriptscriptstyle Z}).$$
Тогда

$$ec{a}ec{b}ec{c} = egin{array}{ccc} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \ \end{array}.$$

Приложение смешанного произведения:

Приложение смешанного произведения: Взаимная ориентация векторов в пространстве:

Приложение смешанного произведения: Взаимная ориентация векторов в пространстве: 1) если $\vec{a}\vec{b}\vec{c}>0$, то тройка векторов \vec{a},\vec{b},\vec{c} правая,

Приложение смешанного произведения:

Взаимная ориентация векторов в пространстве:

- 1) если $ec{a}ec{b}ec{c}>0$, то тройка векторов $ec{a},ec{b},ec{c}$ правая,
- 2) если $\vec{a}\vec{b}\vec{c}<0$, то тройка векторов $\vec{a},\,\vec{b},\,\vec{c}$

левая.

Пример:

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

I₁(2, 5, 5), IVI₂(5, 7, 4), IVI₃(-5, 5,-1), IVI₄(-4,-5, 0₎ Решение.

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

1. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$:

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$:

Пример:

Выяснить, лежат ли в одной плоскости точки

$$M_1(2; 5; 3), M_2(3; 7; 4), M_3(-5; 5; -1), M_4(-4; -3; 0).$$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2} = (3-2;7-5;4-3)$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2}=(3-2;7-5;4-3)=(1;2;1)$,

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2} = (3-2;7-5;4-3) = (1;2;1)$, $\overrightarrow{M_1M_3}$

Пример:

Выяснить, лежат ли в одной плоскости точки

$$M_1(2; 5; 3), M_2(3; 7; 4), M_3(-5; 5; -1), M_4(-4; -3; 0).$$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2}=(3-2;7-5;4-3)=(1;2;1)$, $\overrightarrow{M_1M_3}=(-5-2;5-5;-1-3)$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2}=(3-2;7-5;4-3)=(1;2;1)$, $\overrightarrow{M_1M_3}=(-5-2;5-5;-1-3)=(-7;0;-4)$,

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2} = (3-2;7-5;4-3) = (1;2;1)$, $\overrightarrow{M_1M_3} = (-5-2;5-5;-1-3) = (-7;0;-4)$, $\overrightarrow{M_1M_4}$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2; 5; 3), M_2(3; 7; 4), M_3(-5; 5; -1), M_4(-4; -3; 0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2} = (3-2;7-5;4-3) = (1;2;1)$, $\overrightarrow{M_1M_3} = (-5-2;5-5;-1-3) = (-7;0;-4)$, $\overrightarrow{M_1M_4} = (-4-2;-3-5;0-3)$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$1$$
. Найдем векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_4}$: $\overrightarrow{M_1M_2} = (3-2;7-5;4-3) = (1;2;1)$, $\overrightarrow{M_1M_3} = (-5-2;5-5;-1-3) = (-7;0;-4)$, $\overrightarrow{M_1M_4} = (-4-2;-3-5;0-3) = (-6;-8;-3)$.

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

$$\overrightarrow{M_1M_2} = (1; 2; 1), \ \overrightarrow{M_1M_3} = (-7; 0; -4), \ \overrightarrow{M_1M_4} = (-6; -8; -3).$$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

$$\overrightarrow{M_1M_2} = (1; 2; 1), \ \overrightarrow{M_1M_3} = (-7; 0; -4), \ \overrightarrow{M_1M_4} = (-6; -8; -3).$$

2. Вычислим смешанное произведение этих векторов:

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

$$\overrightarrow{M_1M_2} = (1; 2; 1), \ \overrightarrow{M_1M_3} = (-7; 0; -4), \ \overrightarrow{M_1M_4} = (-6; -8; -3).$$

2. Вычислим смешанное произведение этих векторов:

$$(\overrightarrow{M_1M_2} \times \overrightarrow{M_1M_3}) \cdot \overrightarrow{M_1M_4}$$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

$$\overrightarrow{M_1M_2} = (1; 2; 1), \overrightarrow{M_1M_3} = (-7; 0; -4),$$
 $\overrightarrow{M_1M_4} = (-6; -8; -3).$

2. Вычислим смешанное произведение этих

$$(\overrightarrow{M_1M_2} \times \overrightarrow{M_1M_3}) \cdot \overrightarrow{M_1M_4} = \begin{vmatrix} 1 & 2 & 1 \\ -7 & 0 & -4 \\ -6 & -8 & -3 \end{vmatrix}$$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

$$\overrightarrow{M_1M_2} = (1; 2; 1), \ \overrightarrow{M_1M_3} = (-7; 0; -4), \ \overrightarrow{M_1M_4} = (-6; -8; -3).$$

2. Вычислим смешанное произведение этих

$$(\overrightarrow{M_1M_2} \times \overrightarrow{M_1M_3}) \cdot \overrightarrow{M_1M_4} = \begin{vmatrix} 1 & 2 & 1 \\ -7 & 0 & -4 \\ -6 & -8 & -3 \end{vmatrix} = 30$$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

$$\overrightarrow{M_1M_2} = (1; 2; 1), \ \overrightarrow{M_1M_3} = (-7; 0; -4), \ \overrightarrow{M_1M_4} = (-6; -8; -3).$$

2. Вычислим смешанное произведение этих

$$(\overrightarrow{M_1M_2} \times \overrightarrow{M_1M_3}) \cdot \overrightarrow{M_1M_4} = \begin{vmatrix} 1 & 2 & 1 \\ -7 & 0 & -4 \\ -6 & -8 & -3 \end{vmatrix} = 30 \neq 0$$

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$ Решение.

Отсюда на основании геометрического свойства смешанного произведения делаем вывод, что векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$, $\overrightarrow{M_1M_4}$ не являются компланарными,

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Отсюда на основании геометрического свойства смешанного произведения делаем вывод, что векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M_3}$, $\overrightarrow{M_1M_4}$ не являются компланарными, т.е не лежат в одной плоскости.

Пример:

Выяснить, лежат ли в одной плоскости точки $M_1(2;5;3), M_2(3;7;4), M_3(-5;5;-1), M_4(-4;-3;0).$

Решение.

Отсюда на основании геометрического свойства смешанного произведения делаем вывод, что векторы $\overline{M_1M_2}$, $\overline{M_1M_3}$, $\overline{M_1M_4}$ не являются компланарными, т.е не лежат в одной плоскости. Это значит, что точки M_1 , M_2 , M_3 , M_4 также не лежат в одной плоскости.