Математический анализ

Аннотации лекций

Модуль 1. Элементарные функции и пределы числовых последовательностей **Лекция 1.1**

Логические символы. Виды чисел. Прямая и обратная теоремы. Необходимое и достаточное условия. Расширенное множество действительных чисел. Типы промежутков. Ограниченное и неограниченное множества. Точная верхняя и точная нижняя грани.

Лекция 1.2

Принцип вложенных отрезков. Числовая функция. Основные элементарные функции. Элементарная функция. Числовая последовательность и ее предел. Арифметические свойства конечных пределов.

Лекция 1.3

Необходимое и достаточное условия сходимости. Бесконечно большая последовательность. Бесконечно малая последовательность. Теоремы о конечных и бесконечных пределах. Число е и гиперболические функции.

Модуль 2. Пределы и непрерывность функций одной переменной

Лекция 2.1

Окрестность точки. Типы стремления переменной к точке. Предел функции в терминах последовательностей, окрестностей и неравенств. Арифметические свойства пределов. Односторонние пределы.

Лекция 2.2

Общие свойства пределов. Первый замечательный предел и его следствия. Второй замечательный предел и его следствия. Бесконечно малые функции. Бесконечно большие функции.

Лекция 2.3

Сравнение функций. О-большое и о-малое. Эквивалентные функции и их применение к вычислению предела. Таблица эквивалентных бесконечно малых функций.

Лекция 2.4

Непрерывность функций. Односторонняя непрерывность. Точки разрыва и их классификация. Свойства функций, непрерывных в точке.

Лекция 2.5

Свойства функций, непрерывных в точке (продолжение). Непрерывность функции на промежутке. Наклонные и вертикальные асимптоты графика функции.

Модуль 3. Дифференциальное исчисление функций одной переменной **Лекция 3.1**

Производная функции, ее геометрический смысл. Односторонние производные, их связь с двусторонней производной. Дифференцируемость функции. Свойства дифференцируемых функций. Дифференциал функции, его геометрический смысл и инвариантность формы.

Текст 3.1 для самостоятельного изучения

Производные основных элементарных функций. Правила нахождения производных. Приближенные вычисления с помощью дифференциала. Правила вычисления дифференциала. Производные и дифференциалы высших порядков. Физический смысл первой и второй производных.

Лекшия 3.2

Теоремы Ферма, Ролля, Лагранжа и Коши. Правило Лопиталя. Порядок роста функции.

Лекция 3.3

Формула Тейлора. Формула Маклорена. Приближенные вычисления с помощью

формулы Тейлора. Монотонные функции. Экстремум функции.

Текст 3.2 для самостоятельного изучения

Разложение некоторых элементарных функций по формуле Маклорена. Вычисление пределов по формуле Тейлора.

Лекция 3.4

Условия существования экстремума. Выпуклость функции. Точки перегиба. Схема полного исследования функции.

Модуль 4. Функции нескольких переменных

Лекция 4.1

Понятие функции нескольких переменных. Предел и непрерывность. Частные производные первого порядка. Дифференцируемость.

Текст 4.1 для самостоятельного изучения

Типы множеств в п-мерном пространстве. Приближенные вычисления значений функций. Частные производные высших порядков.

Лекция 4.2

Производная сложной функции (теорема и наиболее распространенные частные случаи). Дифференциал и инвариантность его формы. Дифференциалы высших порядков. Задача о полном дифференциале.

Текст 4.2 для самостоятельного изучения

Неявные функции, системы неявных функций и их производные. Касательная плоскость и нормаль к поверхности. Производная по направлению и градиент.

Лекция 4.3

Формула Тейлора. Экстремум функции нескольких переменных. Необходимое условие. Достаточные условия по второму дифференциалу и угловым минорам. Пошаговые алгоритмы поиска точек экстремума для функций двух и трех переменных.

Текст 4.3 для самостоятельного изучения

Задача на условный экстремум. Необходимое и достаточное условия условного экстремума. Пошаговый алгоритм поиска условного экстремума функции двух переменных с одним ограничением. Наибольшее и наименьшее значения функции на замкнутом ограниченном множестве.

Лекция 4.4

Векторная функция скалярного аргумента, ее предел и производная. Векторная функция постоянной длины.

Текст 4.4 для самостоятельного изучения

Элементы теории кривых. Кривизная и радиус кривизны плоской кривой.