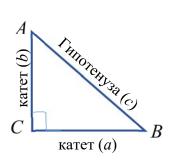

Занятие 1.3

Треугольник, параллелограмм

1 Соотношения между сторонами и углами треугольника

1.1 Произвольный треугольник

Теорема синусов:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$



Длины сторон треугольника пропорциональны синусам противолежащих углов

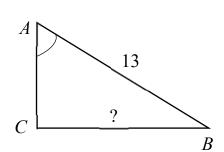
Теорема косинусов: $a^2 = b^2 + c^2 - 2bc \cos A$

Квадрат длины любой стороны треугольника равен сумме квадратов длин двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними

1.2 Прямоугольный треугольник

$$\sin A = \frac{a}{c} = \frac{\text{противолежащий катет}}{\text{гипотенуза}}$$

$$\cos A = \frac{b}{c} = \frac{\text{прилежащий катет}}{\text{гипотенуза}}$$


$$\operatorname{tg} A = \frac{a}{b} = \frac{\operatorname{противолежащий катет}}{\operatorname{прилежащий катет}}$$

$$\operatorname{ctg} A = \frac{b}{a} = \frac{\operatorname{прилежащий катет}}{\operatorname{противолежащий катет}}$$

Теорема Пифагора: $c^2 = a^2 + b^2$

Пример 1. В треугольнике ABC угол C равен 90°, AB=13, $\cos A = \frac{12}{13}$. Найдите BC.

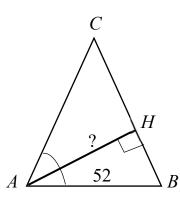
Дано: $\triangle ABC$ — прямоугольный, $\angle C$ =90°, AB=13, $\cos A = \frac{12}{13}$.

Найти: ВС.

Решение.

1.
$$\cos A = \frac{AC}{AB}$$
. Отсюда

$$AC = AB \cdot \cos A = 13 \cdot \frac{12}{13} = 12$$
.


2. По теореме Пифагора

$$BC = \sqrt{AB^2 - AC^2} = \sqrt{13^2 - 12^2} = \sqrt{25} = 5.$$

Ответ: 5.

Пример 2. В треугольнике *ABC AC=BC*, *AB*=52, $\cos A = \frac{3\sqrt{11}}{10}$. Найдите высоту *AH*.

Дано: $\triangle ABC$, AC=BC, AB=52, $\cos \angle CAB = \frac{3\sqrt{11}}{10}$, AH- высота.

Найти: АН.

Решение.

1. $\triangle ABC$ — равнобедренный, т.к. AC=BC. Следовательно,

$$\angle CAB = \angle CBA = \angle ABH$$
.

2. Из *∆АНВ*

$$\sin \angle HBA = \frac{AH}{AB}$$
. Отсюда

$$AH = AB \cdot \sin \angle ABH.$$

2. Воспользуемся основным

тригонометрическим тождеством:

$$\sin \angle ABH = \sqrt{1 - \cos^2 \angle ABH} = \sqrt{1 - \cos^2 \angle CAB} = \sqrt{1 - \frac{99}{100}} = 0,1.$$

Отсюда $AH = 52 \cdot 0, 1 = 5, 2$.

Ответ: 5,2.

© Меньшова И.В., 2020

Задачи для самостоятельного решения

- **1.** В треугольнике ABC угол C равен 90° , AC = 4, $\cos A = 0,5$. Найдите AB. **Ответ:** 8.
- **2.** В треугольнике ABC угол C равен 90°, AC = 2, $\sin A = \frac{\sqrt{17}}{17}$. Найдите BC.

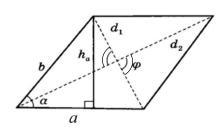
Ответ: 0,5.

3. В треугольнике ABC угол C равен 90°, $\operatorname{tg} A = \frac{\sqrt{33}}{4}$, AC = 4. Найдите AB.

Ответ: 7.

4. В треугольнике *ABC* угол *C* равен 90°, *CH* – высота, *AB*=13, $\operatorname{tg} A = \frac{1}{5}$.

Найдите АН.


Ответ: 12,5.

5. В треугольнике $ABC\ AC=BC$, высота CH=10, AB=15. Найдите $\cos A$.

Ответ: 0,6.

2 Вычисление площадей параллелограмма и треугольника

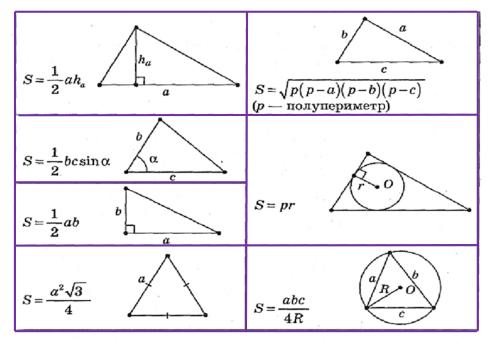
2.1 Площадь параллелограмма

$$S = ah_a \Rightarrow h_a = \frac{S}{a}$$

$$S = ab\sin\alpha$$

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

а, b – стороны параллелограмма,


lpha - угол между сторонами,

 h_a – высота, проведенная к стороне a,

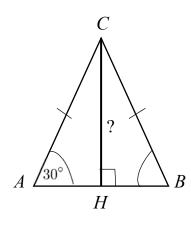
 d_1 , d_2 –диагонали параллелограмма,

arphi - угол между диагоналями

2.2 Площадь треугольника

a, b, c – стороны треугольника,

$$p = \frac{a+b+c}{2}$$
 – полупериметр,


 α – угол между сторонами,

 h_a – высота, проведенная к стороне a,

r – радиус вписанной окружности,

R — радиус описанной окружности

Пример 3. Площадь равнобедренного треугольника равна $4\sqrt{3}$, а углы при основании 30° . Найдите высоту, опущенную на основание этого треугольника.

 $\ensuremath{\it Дано}$: ΔABC — равнобедренный, $AC\!=\!BC,$ $S_{ABC}=4\sqrt{3}$, $\angle CAB=\angle CBA=30^\circ,$ CH — высота.

Найти: СН.

Решение.

1. Так как $\triangle ABC$ — равнобедренный и $\angle CAB = \angle CBA$, то AC=BC. Следовательно, CH — высота, биссектриса и медиана. Тогда AH=2AB.

2.
$$S_{ABC} = \frac{AB \cdot CH}{2} = 4\sqrt{3} \Rightarrow AB \cdot CH = 8\sqrt{3}$$
.

3. Из $\triangle AHC \sin \angle CAH = \frac{CH}{AC}$. Отсюда $CH = AC \cdot \sin 30^\circ = \frac{1}{2}AC$. И по теореме Пифагора $CH = \frac{1}{2}\sqrt{CH^2 + AH^2}$.

4. Обозначим $AH=x,\ CH=y$, тогда

$$\begin{cases} 2xy = 8\sqrt{3}, \\ y = \frac{1}{2}\sqrt{x^2 + y^2} \Leftrightarrow \begin{cases} 2xy = 8\sqrt{3}, \\ 4y^2 = x^2 + y^2. \end{cases}$$

Отсюда

$$\begin{cases} 2xy = 8\sqrt{3}, \\ x = \sqrt{3}y \end{cases} \Leftrightarrow \begin{cases} 2\sqrt{3}y^2 = 8\sqrt{3}, \\ x = \sqrt{3}y \end{cases} \Rightarrow \begin{cases} y = 2, \\ x = 2\sqrt{3}. \end{cases}$$

Ответ: 2.

Пример 4. Длины высот параллелограмма $h_1 = 3$, $h_2 = 5$, а его периметр P = 32. Найдите площадь параллелограмма.

Дано:
$$ABCD$$
 — параллелограмм, DM , DK — высоты, DM = 3, DK = 5, P_{ABCD} = 32.
Найти: S_{ABCD} .
Решение.
1. S_{ABCD} = $AB \cdot DM$ = $CB \cdot DK$. Тогда

$$H$$
айти: S_{ARCD}

$$Pешение.$$

$$1. \qquad S_{ABCD} = AB \cdot DM = CB \cdot DK \,. \qquad \text{Тогда}$$

$$3AB = 5CB \,. \, \text{Следовательно}, \, AB = \frac{5}{3}CB$$

2.
$$P_{ABCD}=2(AB+CB)=32$$
. Отсюда $AB+CB=16$. Тогда
$$\frac{5}{3}CB+CB=16 \Leftrightarrow \frac{8}{3}CB=16 \Leftrightarrow CB=6.$$

3.
$$S_{ABCD} = CB \cdot DK = 6 \cdot 5 = 30$$

Ответ: 30.

Задачи для самостоятельного решения

6. Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 6 и 10.

Ответ: 24.

7. Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 30°.

Ответ: 24.

8. В треугольнике ABC угол C равен 135° , AC = 6 дм, высота BD = 2дм. Найдите площадь треугольника ABD.

Ответ: 8 дм².

9. У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?

Ответ: 6.

10. В параллелограмме ABCD AB = 3, AD = 21, $\sin A = \frac{6}{7}$. Найдите большую высоту параллелограмма.

Ответ: 18.

11. Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.

Ответ: 6.

Задачи для домашнего решения

1. В треугольнике *ABC* угол *C* равен 90°, *CH* – высота, AH=27, $\operatorname{tg} A = \frac{2}{3}$.

Найдите ВН.

Ответ: 12.

2. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет.

Ответ: 6.

3. Найдите основание равнобедренного треугольника, если угол при вершине 120° , а площадь треугольника равна $3\sqrt{3}$.

Ответ: 6.

4. Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.

Ответ: 8.