Московский Государственный Технический Университет им. Н.Э. Баумана Факультет "Фундаментальные науки" Кафедра "Высшая математика"

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.3

к.ф.-м.н. Емгушева Г.П.

Определение

Базис евклидова пространства e_1, e_2, \ldots, e_n называется **ортогональным**, если его элементы образуют ортогональную систему.

Определение

Базис евклидова пространства e_1, e_2, \ldots, e_n называется **ортонормированным**, если его элементы образуют ортонормированную систему.

Примеры ортонормированных базисов:

Примеры ортонормированных базисов:

1. В пространстве V_2 векторы i,j.

Примеры ортонормированных базисов:

- 1. В пространстве V_2 векторы i, j.
- 2. В арифметическом пространстве R^n векторы $e_1=(1;0;\ldots;0),\ e_2=(0;1;\ldots;0),$

...,
$$e_n = (0; 0; ...; 1)$$
.

Теорема

В любом конечномерном евклидовом пространстве существует ортонормированный базис

Определение

Процесс получения из любого базиса f_1, f_2, \ldots, f_k линейной оболочки $L(f_1, f_2, \ldots, f_k)$ ортонормированного базиса e_1, e_2, \ldots, e_k той же линейной оболочки называется процессом ортогонализации Грама-Шмидта:

Определение (продолжение)
$$1) \ g_1 = f_1, \ e_1 = \dfrac{g_1}{\|g_1\|};$$

Определение (продолжение)
$$1) \ g_1 = f_1, \ e_1 = \dfrac{g_1}{\|g_1\|};$$

2)
$$g_2 = f_2 - (f_2, e_1) \cdot e_1, e_2 = \frac{g_2}{\|g_2\|};$$

Определение (продолжение)
$$1) \ g_1 = f_1, \ e_1 = \frac{g_1}{\|g_1\|};$$

2)
$$g_2 = f_2 - (f_2, e_1) \cdot e_1, e_2 = \frac{g_2}{\|g_2\|};$$

3)
$$g_3 = f_3 - (f_3, e_1) \cdot e_1 - (f_3, e_2) \cdot e_2, \ e_3 = \frac{g_3}{\|g_3\|};$$

Определение (продолжение)
$$1) \ g_1 = f_1, \ e_1 = \frac{g_1}{\|g_1\|};$$

2)
$$g_2 = f_2 - (f_2, e_1) \cdot e_1, e_2 = \frac{g_2}{\|g_2\|};$$

3)
$$g_3 = f_3 - (f_3, e_1) \cdot e_1 - (f_3, e_2) \cdot e_2, \ e_3 = \frac{g_3}{\|g_3\|};$$

Определение (продолжение)
$$1) \ g_1 = f_1, \ e_1 = \dfrac{g_1}{\|g_1\|};$$

2)
$$g_2 = f_2 - (f_2, e_1) \cdot e_1$$
, $e_2 = \frac{g_2}{\|g_2\|}$;

3)
$$g_3 = f_3 - (f_3, e_1) \cdot e_1 - (f_3, e_2) \cdot e_2, \ e_3 = \frac{g_3}{\|g_3\|};$$

$$\begin{array}{l} \mathsf{k}) \; g_k = f_k - \big(f_k, e_1\big) \cdot e_1 - \big(f_k, e_2\big) \cdot e_2 - \ldots - \\ - \big(f_{k-1}, e_{k-1}\big) \cdot e_{k-1}, \; e_k = \frac{g_k}{\|g_k\|}. \end{array}$$

Определение (продолжение)
$$1) \ g_1 = f_1, \ e_1 = \dfrac{g_1}{\|g_1\|};$$

2)
$$g_2 = f_2 - (f_2, e_1) \cdot e_1, e_2 = \frac{g_2}{\|g_2\|};$$

3)
$$g_3 = f_3 - (f_3, e_1) \cdot e_1 - (f_3, e_2) \cdot e_2, \ e_3 = \frac{g_3}{\|g_3\|};$$

k)
$$g_k = f_k - (f_k, e_1) \cdot e_1 - (f_k, e_2) \cdot e_2 - \ldots - (f_{k-1}, e_{k-1}) \cdot e_{k-1}, \ e_k = \frac{g_k}{\|g_k\|}.$$

 g_1,g_2,\ldots,g_k - вспомогательные векторы.

Свойства ортонормированного базиса

Свойства ортонормированного базиса Пусть $X = (x_1 \ x_2 \ \dots \ x_n)^T$ и $Y = (y_1 \ y_2 \ \dots \ y_n)^T$ - координатные столбцы векторов x и y евклидова пространства E в ортонормированном базисе e_1, e_2, \dots, e_n . Тогда

Свойства ортонормированного базиса Пусть $X = (x_1 \ x_2 \ \dots \ x_n)^T$ и $Y = (y_1 \ y_2 \ \dots \ y_n)^T$ - координатные столбцы векторов x и y евклидова пространства E в ортонормированном базисе e_1, e_2, \ldots, e_n . Тогда 1. $(x, y) = x_1y_1 + x_2y_2 + \ldots + x_ny_n$

Свойства ортонормированного базиса Пусть $X = (x_1 \ x_2 \ \dots \ x_n)^T$ и $Y = (y_1 \ y_2 \ \dots \ y_n)^T$ - координатные столбцы векторов x и y евклидова пространства E в ортонормированном базисе e_1, e_2, \ldots, e_n . Тогда

1.
$$(x, y) = x_1y_1 + x_2y_2 + \ldots + x_ny_n$$

2.
$$x_i = (x, e_i)$$
.

Пусть дано отображение $\mathbb A$ линейного пространства L_1 в линейное пространство L_2 , сопоставляющее любому элементу $x \in L_1$ некоторый элемент (образ) $\mathbb A x \in L_2$.

Пусть дано отображение $\mathbb A$ линейного пространства L_1 в линейное пространство L_2 , сопоставляющее любому элементу $x \in L_1$ некоторый элемент (образ) $\mathbb A x \in L_2$. Обозначение:

Пусть дано отображение $\mathbb A$ линейного пространства L_1 в линейное пространство L_2 , сопоставляющее любому элементу $x \in L_1$ некоторый элемент (образ) $\mathbb A x \in L_2$. Обозначение:

$$\mathbb{A}: L_1 \longrightarrow L_2$$

Пусть дано отображение $\mathbb A$ линейного пространства L_1 в линейное пространство L_2 , сопоставляющее любому элементу $x \in L_1$ некоторый элемент (образ) $\mathbb A x \in L_2$. Обозначение:

 $\mathbb{A}: \mathcal{L}_1 \longrightarrow \mathcal{L}_2$ - отображение \mathbb{A} , действующее из \mathcal{L}_1 в \mathcal{L}_2 .

Определение

Отображение $\mathbb{A}: L_1 \longrightarrow L_2$ называется **линейным оператором**, если для всех элементов $x,y\in L_1$ и $\forall \lambda\in R$ выполняются соотношения:

$$1) \mathbb{A}(x+y) = \mathbb{A}x + \mathbb{A}y,$$

$$2) \mathbb{A}(\lambda x) = \lambda \cdot \mathbb{A}x.$$

Утверждение

Линейный оператор сохраняет линейные комбинации, то есть переводит линейную комбинацию векторов в линейную комбинацию их образов с теми же коэффициентами:

$$\mathbb{A}\left(\sum_{i=1}^n \lambda_i x_i\right) = \sum_{i=1}^n \lambda_i \mathbb{A} x_i.$$

Утверждение
Линейный оператор переводит нулевой элемент пространства L_1 в нулевой элемент пространства L_2 .

Утверждение Линейный оператор переводит линейно зависимые (независимые) вектора из L_1 в линейно зависимые (независимые) вектора из L_2 .

Определение

Оператор $\mathbb{I}: L \longrightarrow L$, действующий согласно правилу $\mathbb{I} x = x \ \forall x \in L$, называется **тождественным** или **единичным**.

Определение

Оператор $\mathbb{O}: L_1 \longrightarrow L_2$ называют **нулевым,** если $\mathbb{O} x = \theta$

Определение Линейный оператор $\mathbb A$ называют **невырожденным**, если из равенства $\mathbb A x = \theta$ следует, что $x = \theta$. В противном случае оператор $\mathbb A$ называют **вырожденным**.

Примеры линейных операторов:

Примеры линейных операторов:

1. Преобразование подобия: $\mathbb{A}x=\lambda x$, $\forall x\in L$, $\lambda \neq 0$.

Примеры линейных операторов:

- 1. Преобразование подобия: $\mathbb{A}x = \lambda x$, $\forall x \in L$, $\lambda \neq 0$.
- 2. Оператор дифференцирования $\frac{d}{dx}$, действующий в линейном пространстве $P_n[x]$ многочленов степени, не превосходящей числа n.

Рассмотрим действие линейного оператора $\mathbb{A}: L \longrightarrow L$ на векторы базиса $\{e\}$.

Рассмотрим действие линейного оператора $\mathbb{A}: L \longrightarrow L$ на векторы базиса $\{e\}$. Разложим векторы $\mathbb{A}e_1$, $\mathbb{A}e_2$, . . . , $\mathbb{A}e_n$ по базису $\{e\}$:

Рассмотрим действие линейного оператора $\mathbb{A}: L \longrightarrow L$ на векторы базиса $\{e\}$. Разложим векторы $\mathbb{A}e_1$, $\mathbb{A}e_2$, ..., $\mathbb{A}e_n$ по базису $\{e\}$: $\mathbb{A}e_1 = \alpha_{11}e_1 + \alpha_{21}e_2 + \ldots + \alpha_{n1}e_n$, $\mathbb{A}e_2 = \alpha_{12}e_1 + \alpha_{22}e_2 + \ldots + \alpha_{n2}e_n$.

$$\mathbb{A}\mathbf{e}_n = \alpha_{1n}\mathbf{e}_1 + \alpha_{2n}\mathbf{e}_2 + \ldots + \alpha_{nn}\mathbf{e}_n .$$

Коэффициенты α_{ij} этих разложений образуют матрицу

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix},$$

Коэффициенты α_{ij} этих разложений образуют матрицу

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix},$$

которую называют матрицей линейного оператора \mathbb{A} в базисе $\{e\}$.

Здесь i-ый столбец матрицы линейного оператора \mathbb{A} является координатным столбцом вектора $\mathbb{A}e_i$.

Теорема

Пусть даны линейный оператор $\mathbb{A}: L \longrightarrow L$ и базис $\{e\} = (e_1, e_2, \dots, e_n)$ в L. Тогда вектор $\mathbb{A}x$ в базисе $\{e\}$ имеет координаты $A \cdot X$, где A - матрица линейного оператора \mathbb{A} в базисе $\{e\}$, X - координатный столбец вектора x в базисе $\{e\}$.

Определение Операторы $\mathbb{A}: L_1 \longrightarrow L_2$ и $\mathbb{B}: L_1 \longrightarrow L_2$ называются **равными**, если $\mathbb{A}x = \mathbb{B}x$ $\forall x \in L_1$.

Определение

Суммой операторов $\mathbb{A}: L_1 \longrightarrow L_2$ и $\mathbb{B}: L_1 \longrightarrow L_2$ называется оператор $(\mathbb{A}+\mathbb{B}): L_1 \longrightarrow L_2$, действующий по правилу $(\mathbb{A}+\mathbb{B})x = \mathbb{A}x + \mathbb{B}x \ \forall x \in L_1.$

Свойства операции сложения операторов:

Свойства операции сложения операторов:

$$1) \mathbb{A} + \mathbb{B} = \mathbb{B} + \mathbb{A},$$

Свойства операции сложения операторов:

1)
$$\mathbb{A} + \mathbb{B} = \mathbb{B} + \mathbb{A}$$
,

2)
$$(\mathbb{A} + \mathbb{B}) + \mathbb{C} = \mathbb{A} + (\mathbb{B} + \mathbb{C}),$$

Свойства операции сложения операторов:

1)
$$\mathbb{A} + \mathbb{B} = \mathbb{B} + \mathbb{A}$$
,

2)
$$(\mathbb{A} + \mathbb{B}) + \mathbb{C} = \mathbb{A} + (\mathbb{B} + \mathbb{C}),$$

3)
$$\mathbb{A} + (-\mathbb{A}) = \mathbb{O}$$
,

где $(-\mathbb{A})$ – противоположный оператор.

Определение

Произведением оператора $\mathbb{A}: L_1 \longrightarrow L_2$ на действительное число λ называется оператор $(\lambda \mathbb{A}): L_1 \longrightarrow L_2$, действующий по правилу $(\lambda \mathbb{A})x = \lambda \cdot \mathbb{A}x \ \forall x \in L_1$.

1.
$$\alpha(\beta \mathbb{A}) = (\alpha \beta) \mathbb{A}$$
.

- 1. $\alpha(\beta \mathbb{A}) = (\alpha \beta) \mathbb{A}$.
- 2. $(\alpha + \beta) \mathbb{A} = \alpha \mathbb{A} + \beta \mathbb{A}$.

- 1. $\alpha(\beta \mathbb{A}) = (\alpha \beta) \mathbb{A}$.
- 2. $(\alpha + \beta) \mathbb{A} = \alpha \mathbb{A} + \beta \mathbb{A}$.
- 3. $\alpha (\mathbb{A} + \mathbb{B}) = \alpha \mathbb{A} + \alpha \mathbb{B}$.

Определение

Произведением операторов $\mathbb{A}: L_2 \longrightarrow L_3$ и $\mathbb{B}: L_1 \longrightarrow L_2$ называется оператор $(\mathbb{A}\mathbb{B}): L_1 \longrightarrow L_3$, действующий по правилу $(\mathbb{A}\mathbb{B})x = \mathbb{A}(\mathbb{B}x) \ \forall x \in L_1$.

Свойства операции умножения операторов

Свойства операции умножения операторов 1. $(\mathbb{AB})\mathbb{C} = \mathbb{A}(\mathbb{BC})$.

Свойства операции умножения операторов

- 1. $(\mathbb{AB})\mathbb{C} = \mathbb{A}(\mathbb{BC})$.
- 2. (A + B) C = AC + BC,

Свойства операции умножения операторов

- 1. $(\mathbb{AB})\mathbb{C} = \mathbb{A}(\mathbb{BC})$.
- 2. (A + B)C = AC + BC,

$$\mathbb{C}(\mathbb{A} + \mathbb{B}) = \mathbb{C}\mathbb{A} + \mathbb{C}\mathbb{B}.$$

Замечание Умножение линейных операторов не коммутативно.

Утверждение

В конечномерных линейных пространствах произведению линейного оператора на число, сумме линейных операторов и произведению линейных операторов соответствуют такие же действия с их матрицами.

Пусть $\mathbb{A}: L \longrightarrow L$ - линейный оператор, $\{e\} = (e_1, e_2, \ldots, e_n)$ и $\{f\} = (f_1, f_2, \ldots, f_n)$ - два базиса пространства L; A_e и A_f - матрицы линейного оператора \mathbb{A} в базисах $\{e\}$ и $\{f\}$.

Теорема

Матрицы A_e и A_f линейного оператора $\mathbb{A}: L \longrightarrow L$ в различных базисах $\{e\}$ и $\{f\}$ связаны соотношением

$$A_f = T_{e \to f}^{-1} \cdot A_e \cdot T_{e \to f}, \tag{1}$$

где $T_{e o f}$ - матрица перехода от базиса $\{e\}$ к базису $\{f\}$.

Определение

Квадратные матрицы A и B порядка n называются **подобными**, если существует такая невырожденная матрица P, что

$$P^{-1} \cdot A \cdot P = B. \tag{2}$$

Следствие

Формула (1) означает, что матрицы, представляющие один и тот же оператор в разных базисах, являются подобными. Верно и обратное, если две матрицы A и B подобны, то есть выполняется (2), то их можно рассматривать, как матрицы одного оператора, но в разных базисах.

Определение
Определителем линейного оператора
называется определитель его матрицы в
каком-либо базисе

Теорема

Если матрицы A и B подобны, то det A = det B.

Следствие
Определитель матрицы линейного оператора
не зависит от выбора базиса.

