Московский Государственный Технический Университет им. Н.Э. Баумана Факультет "Фундаментальные науки" Кафедра "Высшая математика"

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2

к.ф.-м.н. Емгушева Г.П.

Определение

Непустое множество L_1 линейного пространства L ($L_1 \subset L$) называется линейным подпространством пространства L , если выполняются условия:

- 1) $\forall x,y \in L_1: (x+y) \in L_1$,
- 2) $\forall x \in L_1 \text{ in } \forall \lambda \in R : \lambda x \in L_1.$

Утверждение

Подмножество L_1 , удовлетворяющее условиям данного определения, само является линейным пространством относительно операций сложения элементов и умножения на действительное число, действующих в L.

Примеры линейных подпространств:

Примеры линейных подпространств:

1. В любом линейном пространстве L всегда имеются два линейных подпространства: само пространство L и нулевое подпространство, состоящее из одного нулевого элемента heta . Эти подпространства называются несобственными. Все остальные линейные пространства называются собственными.

Примеры линейных подпространств:

2. Множество всех свободных векторов, параллельных данной плоскости, образуют линейное подпространство пространства V_3 всех свободных векторов трехмерного пространства.

Примеры линейных подпространств:

3. В линейном пространстве $M_n(R)$ всех квадратных матриц порядка n линейное подпространство образуют все симметрические матрицы.

Свойства линейного подпространства:

Свойства линейного подпространства:

1. Если e_1, e_2, \ldots, e_k - элементы линейного пространства L_1 , то любая их линейная комбинация $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k$ также является элементом L_1 .

Свойства линейного подпространства:

- 1. Если e_1, e_2, \ldots, e_k элементы линейного пространства L_1 , то любая их линейная комбинация $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k$ также является элементом L_1 .
- 2. Размерность любого подпространства линейного пространства не превосходит размерности самого пространства.

Определение

Пусть e_1, e_2, \ldots, e_k - совокупность элементов линейного пространства L . Линейной оболочкой элементов e_1, e_2, \ldots, e_k называется совокупность всех линейных комбинаций этих элементов, то есть множество $\{\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_k e_k | \lambda_i \in R, i = \overline{1, k}\}.$

Определение (продолжение) При этом говорят, что линейная оболочка натянута на векторы e_1, e_2, \ldots, e_k .

Определение (продолжение) При этом говорят, что линейная оболочка натянута на векторы e_1, e_2, \ldots, e_k . Обозначение: $L\left(e_1, e_2, \ldots, e_k\right)$

Свойства линейной оболочки:

Свойства линейной оболочки:

1. Пусть e_1, e_2, \ldots, e_k - элементы линейного пространства. Тогда линейная оболочка $L\left(e_1, e_2, \ldots, e_k\right)$ является линейным подпространством линейного пространства L.

Свойства линейной оболочки:

- 1. Пусть e_1, e_2, \ldots, e_k элементы линейного пространства. Тогда линейная оболочка $L\left(e_1, e_2, \ldots, e_k\right)$ является линейным подпространством линейного пространства L .
- 2. Линейная оболочка элементов e_1, e_2, \ldots, e_k является наименьшим подпространством, содержащим эти элементы.

Свойства линейной оболочки:

- 1. Пусть e_1, e_2, \ldots, e_k элементы линейного пространства. Тогда линейная оболочка $L\left(e_1, e_2, \ldots, e_k\right)$ является линейным подпространством линейного пространства L .
- 2. Линейная оболочка элементов e_1, e_2, \ldots, e_k является наименьшим подпространством, содержащим эти элементы.
- 3. Любое линейное пространство является линейной оболочкой любого из своих базисов.

Свойства линейной оболочки:

4. Размерность линейной оболочки $L\left(e_{1},e_{2},\ldots,e_{k}\right)$ равна максимальному числу линейно независимых элементов в системе e_1 , e_2, \ldots, e_k . Если элементы e_1, e_2, \ldots, e_k линейно независимы, то размерность линейной оболочки $L\left(e_{1},e_{2},\ldots,e_{k}\right)$ равна k, а сами элементы e_1, e_2, \ldots, e_k образуют базис линейной оболочки $L(e_1, e_2, \ldots, e_k)$.

Определение

Вещественное линейное пространство Eназывается евклидовым пространством, если в этом пространстве имеется правило, согласно которому любой паре векторов $x, y \in E$ ставится в соответствие действительное число, обозначаемое (x, y) и называемое скалярным произведением.

Определение (продолжение)
При этом выполняются **аксиомы скалярного произведения**:

Определение (продолжение)
При этом выполняются аксиомы скалярного произведения:

1. (x, y) = (y, x) - коммутативность,

Определение (продолжение)
При этом выполняются **аксиомы скалярного произведения**:

1.
$$(x, y) = (y, x)$$
 - коммутативность,

2.
$$(x + y, z) = (x, z) + (y, z) \forall z \in E$$
 - дистрибутивность,

Определение (продолжение)

При этом выполняются аксиомы

скалярного произведения:

- 1. (x, y) = (y, x) коммутативность,
- 2. $(x + y, z) = (x, z) + (y, z) \forall z \in E$ дистрибутивность,
- 3. $(\lambda x, y) = \lambda (x, y) \, \forall \lambda \in R$ ассоциативность,

Определение (продолжение)

При этом выполняются аксиомы

скалярного произведения:

- 1. (x, y) = (y, x) коммутативность,
- 2. $(x + y, z) = (x, z) + (y, z) \forall z \in E$ дистрибутивность,
- 3. $(\lambda x, y) = \lambda (x, y) \, \forall \lambda \in R$ ассоциативность,
- 4. $(x,x) \ge 0$, причем $(x,x) = 0 \Longleftrightarrow x = 0$ –

неотрицательность скалярного произведения.

Примеры евклидовых пространств:

Примеры евклидовых пространств:

1. В линейных пространствах V_2 и V_3 любых свободных векторов на плоскости и в пространстве вводится скалярное произведение: $(x,y) = |x||y|\cos\varphi$.

Примеры евклидовых пространств:

- 1. В линейных пространствах V_2 и V_3 любых свободных векторов на плоскости и в пространстве вводится скалярное произведение: $(x,y)=|x||y|cos\varphi$.
- 2. В арифметическом линейном пространстве R^n скалярное произведение задается формулой $(x, y) = x_1y_1 + x_2y_2 + \ldots + x_ny_n$.

Примеры евклидовых пространств:

3. В линейном пространстве C[a,b] всех функций, непрерывных на [a,b], скалярное произведение задается формулой

$$(x(t),y(t)) = \int_a^b x(t)y(t) dt$$

Замечание
В одном и том же линейном пространстве скалярное произведение можно задать разными способами.

Теорема (неравенство Коши-Буняковского)

Теорема (неравенство Коши-Буняковского) Для любых векторов $x, y \in E$ справедливо неравенство Коши-Буняковского:

$$(x,y)^2 \le (x,x) \cdot (y,y)$$

Следствия:

Следствия:

1. Неравенство Коши-Буняковского в R^n (или **неравенство Коши**):

Следствия:

1. Неравенство Коши-Буняковского в R^n (или **неравенство Коши**):

$$(x_1y_1+\ldots+x_ny_n)^2\leq$$

$$\leq (x_1^2 + \ldots + x_n^2) (y_1^2 + \ldots + y_n^2).$$

Следствия:

2. Неравенство Коши-Буняковского в C[a,b] (или **неравенство Шварца**):

Следствия:

2. Неравенство Коши-Буняковского в C[a,b] (или **неравенство Шварца**):

$$\left(\int_{a}^{b}x\left(t\right) y\left(t\right) dt\right) ^{2}\leq$$

$$\leq \int_a^b x^2(t) dt \cdot \int_a^b y^2(t) dt$$

Следствия:

3. Неравенство Коши-Буняковского в V_2 и V_3 :

Следствия:

3. Неравенство Коши-Буняковского в V_2 и V_3 : $(x,y)^2 < |x| \cdot |y|$.

Обобщением понятия длины свободного вектора является норма.

Определение

Определение

1.
$$||x|| \ge 0$$
, причем $||x|| = 0 \iff x = 0$,

Определение

- 1. $||x|| \ge 0$, причем $||x|| = 0 \iff x = 0$,
- 2. $\|\lambda x\| = \lambda \|x\| \ \forall \lambda \in R$,

Определение

- 1. $||x|| \ge 0$, причем $||x|| = 0 \iff x = 0$,
- 2. $\|\lambda x\| = \lambda \|x\| \ \forall \lambda \in R$,
- 3. $||x + y|| \le ||x|| + ||y||$ неравенство треугольника.

Определение
Линейное пространство, в котором задана норма, называется нормированным пространством.

Теорема
Любое евклидово пространство является нормированным, если норма определяется равенством

$$||x|| = \sqrt{(x,x)}$$

Примеры:

Примеры:

1. В евклидовых пространствах V_2 и V_3 : $\|x\| = |x|$.

Примеры:

1. В евклидовых пространствах V_2 и V_3 :

$$||x|| = |x|.$$

2. В евклидовом пространстве R^n :

$$||x|| = \sqrt{x_1^2 + \ldots + x_n^2}.$$

Примеры:

1. В евклидовых пространствах V_2 и V_3 :

$$||x|| = |x|.$$

2. В евклидовом пространстве R^n :

$$||x|| = \sqrt{x_1^2 + \ldots + x_n^2}.$$

3. В евклидовом пространстве C[a, b]:

$$||x||=\sqrt{\int_a^b x^2(t)\,dt}$$
.

Замечание 1 Используя норму, неравенство Коши-Буняковского можно записать в виде

$$|(x,y)| \leq ||x|| \cdot ||y||$$

Замечание 2 Угол φ между векторами x и y можно определить из равенства $\cos \varphi = \frac{(x,y)}{\|x\|\cdot\|y\|} = \frac{(x,y)}{\sqrt{(x,x)}\sqrt{(y,y)}}$

Определение Два ненулевых вектора евклидова пространства $x, y \in E$ называются **ортогональными**, если их скалярное произведение равно нулю, то есть (x, y) = 0.

Определение

Система ненулевых элементов x_1, \ldots, x_n евклидова пространства называется **ортогональной системой**, если любые два элемента этой системы ортогональны, то есть $(x_i, x_j) = 0, i \neq j, i, j = \overline{1, n}$.

Определение

Система ненулевых элементов x_1, \ldots, x_n евклидова пространства называется **ортонормированной системой**, если любые элементы этой системы попарно ортогональны и норма каждого элемента равна 1, то есть

$$(x_i,x_j)=\left\{egin{array}{l} 0,i\neq j,\ 1,i=j, \end{array}
ight.$$

Теорема
Любая ортогональная (ортонормированная)
система ненулевых элементов линейно
независима.

Следствие

В n-мерном евклидовом пространстве любая ортогональная (ортонормированная) система из n элементов образует базис.

