Лекция 4.8

1 Теория кривых

Пусть векторы $\overline{r}(t)$ при всех значениях переменной t прикреплены к точке O, которая является началом декартовой системы координат.

Вектор $\overline{r}(t)$ соединяет точку O с некоторой точкой M. Соответственно, $\overline{r}(t)$ называется радиус-вектором точки M.

3а координаты точки M возьмем координаты ее радиус-вектора.

Определение

Непрерывное отображение отрезка [a,b] в пространство R^3 называется кривой и обозначается Γ .

Способы задания:

- 1) $\Gamma = \{M(t)|a \leq t \leq b\}$ точечное представление,
- 2) $\Gamma = \{\overline{r}(t) | a \le t \le b\}$ векторное представление,
- 3) $\Gamma = \{x(t), y(t), z(t) | a \le t \le b\}$ координатное представление.

Определение

Множество точек пространства R^3 , на которое отображается отрезок [a,b], называется носителем кривой Γ .

Определение

Если носитель лежит в некоторой плоскости, то кривая называется плоской.

Определение

Последовательность точек $t_0, t_1, ..., t_n$, удовлетворяющая условию $a = t_0 < t_1 < ... < t_{n-1} < t_n = b$, называется разбиением отрезка [a,b].

Определение

Последовательность точек $M_0, M_1, ..., M_n$, соответствующая значениям $t_0, ..., t_n$, называется разбиением кривой Γ .

Соединив точки $M_0, M_1, ..., M_n$ отрезками $M_0M_1, M_1M_2, ..., M_{n-1}M_n$, получим ломаную P_n , которая называется вписанной в кривую Γ . Длина каждого отрезка $M_{k-1}M_k$ равна $|\overline{r}(t_k)-\overline{r}(t_{k-1})|$. Следовательно, длина σ_n всей ломаной P_n равна:

$$\sigma_n = \sum_{k=1}^n |\overline{r}(t_k) - \overline{r}(t_{k-1})|.$$

Определение

Длиной кривой Γ называется точная верхняя грань длин всевозможных ломаных P_n , т.е.

$$L_{\Gamma} = \sup \sigma_n$$
.

Определение

Если функция $\overline{r}'(t)$ непрерывна на отрезке [a,b], то кривая Γ называется непрерывно дифференцируемой.

Теорема (о переменной длине дуги)

Пусть кривая Γ непрерывно дифференцируема. Тогда переменная длина дуги l, отсчитываемая от начала $\overline{r}(a)$ кривой Γ , является возрастающей непрерывно дифференцируемой функцией переменной t. При этом

$$\frac{dl}{dt} = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} = \left| \frac{d\overline{r}}{dt} \right|.$$

Рассмотрим плоскую кривую $\Gamma = \{x(t), y(t) | a \le t \le b\}$. Тогда

$$\frac{dl}{dt} = \sqrt{(x'(t))^2 + (y'(t))^2}$$

$$dl = \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

ИЛИ

$$(dl)^2 = (x'dt)^2 + (y'dt)^2 = (dx)^2 + (dy)^2.$$

dl - дифференциал длины дуги плоской кривой.

 $PM = \Delta y$ - приращение функции y в точке $x_0 + dx$,

PN = dy - приращение ординаты касательной в точке $x_0 + dx$,

 $\Delta M_0 NP$ - прямоугольный треугольник

$$\Rightarrow M_0 N^2 = M_0 P^2 + PN^2 = dx^2 + dy^2 = (dl)^2$$

$$\Rightarrow dl = M_0 N$$

Отсюда получаем геометрический смысл дифференциала длины дуги плоской кривой:

Дифференциал длины дуги dl равен приращению длины касательной M_0N .

2 Кривизна и радиус кривизны плоской кривой

Рассмотрим на кривой Γ точки M_0 и M_1 .

Проведем через эти точки касательные. При переходе от точки M_0 к точке M_1 касательная поворачивается на угол $\Delta \varphi$.

Определение

Отношение угла $\Delta \varphi$ к длине Δl дуги, заключенной между точками M_0 и M_1 , называется средней кривизной дуги:

$$K_{sr} = \frac{\Delta \varphi}{\Delta l}.$$

 K_{sr} характерезует среднюю изогнутость кривой. Чем меньше K_{sr} , тем ближе кривая к прямой.

Определение

Кривизной кривой Γ в точке M_0 называется предел

$$K = \lim_{M_1 \to M_0} K_{sr}.$$

Определение

Величина, обратная кривизне, называется радиусом кривизны.

Обозначение:
$$R = \frac{1}{K}$$
.

Проведем к кривой Γ в точке M нормаль и отложим на этой нормали в сторону вогнутости кривой отрезок MN с длиной, равной R.

Определение

Точка N называется центром кривизны, а окружность с центром в точке N и радиусом R - окружностью кривизны плоской кривой.